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ABSTRACT 

The transport of thermal radiation through an absorbing medium 

bounded by parallel walls is predicted. The walls are heated and are 

assumed to emit, reflect, and transmit the radiation isotropically. 

The medium is assumed to be in local thermodynamic equilibrium and to 

have radiative characteristics that can be averaged over the entire 

frequency range. First, relations are given whereby the solution 

becomes available once the problem associated with the case of opaque, 

black walls is solved. Second, different methods are employed to 

derive approximations of radiative flux and temperature distribution 

through the medium. Simple fomlas, of interest in engineering design 

and analysis, appear as a by-product of the study. Comparisons are 

made with previously published numerical results. /J d T W 4  

INTROMTCTIOII 

A number of references are now available in which the equations 

characterizing the transport of thermal radiation through an absorbing 

medium are formulated and mathematical techniques leading to actual pre- 

dictions are developed. Foremost among these are the treatises of 
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Chandrasekhar [l], Kourganoff [ 2 ] ,  and Sobolev 131.  

re tains  considerable algebraic complexity, however, pa r t i a l ly  because 

of the mult ipl ic i ty  of physical parameters affecting the phenomena and 

the number of additional idealizations that are  of prac t ica l  in te res t .  

Thus, i n  sp i t e  of the theoret ical  understanding tha t  has been achieved, 

and although numerical solutions by means of high-speed computers of fe r  

no essent ia l  d i f f i cu l t i e s ,  the problem of e f f i c i en t  presentation of 

r e su l t s  remains a challenge. The present paper attempts t o  contribute 

some efficiency of presentation t o  predictions of radiat ive transport  

through an absorbing medium contained between two para l le l  w a l l s  w i t h  

specified temperatures and known radiative character is t ics .  

The analysis 

Two pa ra l l e l  objectives are t o  be kept i n  mind. F i r s t ,  a close 

connection i s  established between the general problem of radiat ive 

energy transport between w a l l s  that emit, transmit, and r e f l ec t  i so-  

t rop ica l ly  and the problem o f  transport between opaque, black w a l l s .  

The l a t t e r  case has been treated by Usiskin and Sparrow [4 ]  and n-meri- 

c a l  solutions have been given f o r  different values of the opt ica l  thick- 

ness of the plane layer between the w a l l s ,  

the  r e su l t s  of [4] may be ayplied w i t h  only minor modification t o  the 

more general case. Second, since the calculations of Usiskin and 

Sparrow are  available f o r  comparison, approximations t o  the solutions 

of the governing equations are  studied. In th i s  way, rather simple 

expressions are  derived tha t  provide a surprising accuracy and that 

cer ta in ly  should be useful i n  preliminary design o r  engineering analysis. 

It w i l l  be shown here tha t  

/ 



I n  the next section the governing equations are derived. The more 

or less conventional approach leads t o  an expression f o r  f lux  of radia- 

t ion  that was given expl ic i t ly  by H. and M. Goulard [5 ] .  Differences 

i n  terminology were considered necessary and the derivation of w a l l  con- 

di t ions was cast  i n  a different  form, a l l  of which prompted the inclu- 

sion of this  basic material. 

gives a proof that i t e r a t i v e  methods can be used t o  solve the basic 

integral  equation and then re la tes  the problem t o  the case of black 

w a l l s .  

and comparisons between solutions involving differ ing orders of accuracy. 

The discussion of the general solution 

The remaining portion of the paper deals w i t h  approximations 

Three methods, yielding increasing degrees of accuracy, w i l l  evolve. 

The f i r s t ,  based on the use of an exponential influence function i n  

place of the exact exponential-integral function, simplifies the analysis 

so  much that a l l  results can be expressed algebraically. 

dis t r ibut ion of the temperature (or the emission) within the  medium suf- 

fers increasing inaccuracy near the w a l l s  but further integration t o  

determine flux between the w a l l s  leads t o  predictions tha t  are never i n  

e r ror  more than a few percent. Perhaps more important is  the f a c t  t h a t  

the formulas are  eas i ly  manipulated t o  display major effects  of' varia- 

t ions  i n  the various physical parameters. The second method i s  similar 

i n  approach t o  the Milne-Eddington approximation used i n  the  study of 

s te l lar  atmospheres and improves the accuracy of the predictions without 

introducing undue complexity. Finally, an i t e r a t i v e  calculation of a 

par t icxlar ly  simple form provides estimates that agree w e l l  w i t h  the  

The detailed 



more accurate numerical solutions that are available. These iterative 

calculations are then used to establish the degree of confidence one 

can have in the other approximations. 

TABLE OF SYMBOrX 

A 

Bv 

[ (1/2) - E3(5L) 1 
Planck's function (see eq. (5)) 

CO 
-xt -n %(x> integroexponential mction of order n; Q(x) = r e t dt 

H([,EL) 

I(X,P) 

integral used in iterative solution (see eq. (48b)) 

specific intensity, energy per unit area, time, solid angle 

3 local emission coefficient, per unit mass 

J 

L 

m ,  n 

Z 

a 

source function (see eq. (5)) 

weighted integrals of emission functior, (see eqs. (27) and (32b)) 

geometric thickness of plane layer (fig. 1) 

coefficients used in exponential approximation of E2 (x) 

(see eq. (35)) 

rate of energy transport per unit area 

reflectivity 

transmissivity 

temperature, absolute 

geometric depth in absorbing layer 

see equations (27) 

absorptivity 
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n 

8 

8 

K 

h 

0 

L 

emission function (see eq. (11)) 

coefficient of cubic term in approximation of emission 

function (see eq. (46)) 

see equation ( 2 9 )  

emissivity 

angle between ray and element normal to surface (see fig. 1) 

loca l  absorption coefficient, per unit mass 

slope of linear approximation to emission function (see 

eq* (454) 

cos 8 

optical depth in absorbing layer (dk = pK dx) 

local density of absorbing medium 

Stefan's constant 

dimensionless form of emission function (see eq. (25)) 

Sub s cr i p t  s 

evaluated at = 0 
nL 

evaluated at F; = F ; ~  =Jo p~ d~ 

Superscripts 

right -going ( E  increasing) quantity 

left -going ( 5  decreasing) quantity 
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GOYERNTNG EQUATIONS 

Figure 1 shows the orientation of the coordinate system t o  be 

used, The two walls are  s i tuated at x = 0 and x = L, Let conditions 

a t  e i ther  w a l l  be indicated by the subscript i where i = 0 o r  L. 

Then, we have temperature, T i ,  emissivity, e l ,  absorptivity, ai, 

re f lec t iv i ty ,  ri, and transmissivity, ti, prescribed as known boundary 

conditions where 

It i s  assumed tha t  the gas and walls have cha rac t e rd t i c s  that may be 

averaged over the en t i re  frequency range of the radiation, so  t ha t  a 

gray analysis applies, and the walls emit and r e f l ec t  diffusely.  - 
The basic equation of radiative t ransfer  i s  (see, e.g., [ 21) 

Equation (2)  i s  preferably expressed i n  terns  of the independent var i -  

able 5 (opt ical  depth) where 

a5 = pK dx 

and thus becomes 

(3) 
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where J ( = j / p K )  i s  called the source function. Provided the refrac-  

t i v e  index of the medium i s  1 and local  thermodynamic equilibrium 

i s  achieved, the source M c t i o n  i s  given by 

Bv dv = a T4 ( 5 )  J =  lw x 

where 

Planck' s fhnction 2hv3 exp( -hv/kT) Bv (= - 
c2 1 - exp(-hv/kT) 

V frequency 

h, k, CJ Planck, Boltzmann, and Stefan constants 

C velocity of l i g h t  

The notation 

serves to  distinguish the r a t e  of f l o w  of energy per un i t  area and 

so l id  angle f o r  posit ive and negative values of p(=cos e ) .  With t h i s  

notation, the solution of equation (4)  in  the two regimes becomes 

where 

by the w a l l s  a t  5 = 0 and EL = fo PK dx,  respectively 8 

I'(0) and I-( ST,) are the isotropic specif ic  in tens i t ies  induced 
I 

L 
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The t o t a l  rates of energy transport per un i t  area i n  the posit ive 

and negative x directions are 

The values of qf(S) and q - ( t )  are sometimes referred t o  as the r igh t  

and l e f t  fluxes of radiation. 

re la t ions 

Equations (7) and (8) yield the two - 

+ where < = SCI (0) ,  q i  = gI-(E,-,) and En(5) i s  the nth exponential 

in tegra l  defined as 

If loca l  unidimensional energy flux (ne t  energy transport  per un i t  

t i m e  and area) i s  denoted q( E,), one has 

and 

x direction. 

t ion .  Af'ter se t t ing  

q([) > 0 obviously correEponds t o  a net energy flow i n  the posit ive 

From equations ( y j  and (LU) foiiows Yne fundamental rela- I - - \  



one gets 

It will be noted that the expression sgn( E - t l)&( I 5 - g I), in the 

integrand o f  (12), is discontinuous when This requires care 

in differentiation, 

SI = g 

Equation (12) is the flux equation for our unidimensional problem. 

The notation does not agree precisely with conventional astrophysical 

terminology but the choice of variables should preclude any ambiguities. 

The value of q(g)  differs by a factor K from the astrophysicists' 

flux, usually denoted F. Sign conventions are also changed. The inde- 

pendent variable g is, of course, dimensionless since the volumetric 

absorption coefficient pK is measured in terms of the reciprocal of 

radiation mean free path length. 

The dimensionless parameter tL (optical thickness of layer) will 
be seen later to play a unique role in fixing the nature of the varia- 

tion of the emission fbnction 

references the volumetric absorption coefficient is assumed a constant 

so that k L  becomes PKL. The transformation to optical path length 

P ( E ) .  It should be remarked that in some 

2." -n.,o+-tnn 
G3YC*U,VIVCL (3) chcrzr t.hat. k h l s  restriction is not necessary. 

recent paper, Probstein [ 6 ]  has developed an analogy between 

In a 

p K L  and 
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the  inverse Knudsen nuniber of low-density f l u i d  mechanics. 

number appears i n  molecular transport phenomena and i s  the r a t i o  of 

molecular col l is ion mean f ree  path t o  the character is t ic  flow length. 

The term pKL 

t e r i s t i c  length and the mean f r ee  path of a photon. 

considerable heuris t ic  value and enables Probstein t o  present, for the  

case of black w a l l s ,  an approximate expression f o r  flux by means of the 

analogy. S i d l a r  approximate resul ts  t ha t  apply t o  more arbi t rary w a l l  

conditions w i l l  be considered in the f i n a l  section of this paper. 

The Knudsen 

can similarly be expressed as the  r a t i o  between charac- 

This concept i s  of 

Calculation of Input  Conditions a t  Walls 

The magnitudes of and q i  are re la ted t o  the w a l l  temperatures 

(or di rec t  w a l l  emission) as well as the w a l l  parameters introduced i n  

equations (1). 

Thus, one can write the two balances 

Two equal i t ies  exist  which serve t o  f i x  these values. 

These relat ions simply s t a t e  t h a t  the energy per un i t  time and area 

coming from each of the w a l l s  i s  equal t o  the  d i rec t  emission plus the 

re f lec ted  portion of the incordng radiation from external sources, that 

is ,  from the other w a l l  and the medium between the walls. 

t i v e  expressions for q+ sre, r r n m  ecpnt.ions ( 9 ) ;  

The quantita- 

L 
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From equations (13) the desired conditions at  the w a l l s  now follow; 

thus 

Basic Integral  Equation for Constant Flux 

For constant w a l l  temperatures and loca l  thermodynanic equilibrium, 

q( E ) ,  as given i n  equation (12), must be a constant. 

q(E), from equation (12), i s  

The derivative of 

(1.5) 
I 
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m d  for c o n s t a t  flux one gets the basic integral  equation 

Two special  cases of e p a t t o n  (16) are o f  part icular  in te res t .  

F i r s t ,  f o r  opaque, black walls, ti =. 0, ri = 0, and the  w a l l  emissions, 

as given in  equations (Ui.), are  

Usiskin and Sparrow [4] have given numerical resu l t s  corresponding t o  

these conditions, 

observes i n  equations (14) that 

on 5 

st ipulat ion concerning physical conditions at  the w a l l s .  

i s  thus used t o  determine solutions i n  terms of the  parameters 

and q i  

boundary conditions i s  established l a t e r  i n  an auxiliary calculation. 

The importance of t h i s  case i s  enhanced once one 

$ and q i  have no expl ic i t  dependence 

and tha t  the  analysis can proceed formally without a precise 

Equation (16) 

< 
and the connection between these parameters and the actual  

A second case of in te res t  arises i n  re la t ing  equation (16) t o  the 

problem of a plane, pazallel ,  semi-inf'inite s t e l l a r  atmosphere. This 

ideal izat ion occurs when the l e f t  wall at  x = 0 i s  transparent (to = 1, 

ro = 0) and the  r igh t  w a l l  i s  allowed t o  recede t o  an in f in i t e  distance. 

Here, the driving terms i n  the right member of equation (16) vanish, 

since The integral  equation becomes homogeneous 4 = 0 and EL = CO. 
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and the physical constants that should determine the magnitude of the 

emission function 8 (  5 )  seemingly disappear from the problem. Actually, 

the one constant t ha t  f ixes  the radiation leve l  i n  t h i s  case i s  the con- 

s tan t  value of flux. The f'unction P ( 5 )  must be re la ted  t o  q which 

means tha t  equation (12) cannot be disregarded. Equation (12) i s ,  i n  

f a c t ,  the f'undamental governing equation; the derivation leading t o  

equation (16), o r  (l7), involves the l o s s  of a physical constant, and 

it might be expected that under the most general conditions a res torat ion 

of the constant would be required. 

I n  astrophysics the study of a semi-infinite atmosphere under con- 

d i t ions  involving thermodynamic equilibrium i s  referred t o  as Milne's 

r e s t r i c t ed  problem, and equation (17) i s  called the Milne (or  Milne- 

Schwarzschild) integral  equation. A more than substant ia l  l i t e r a tu re  

ex i s t s  on the mathematical analysis of t h i s  par t icular  idealization. 

Milnets equation i s  obviously a limiting case (EL + 03, 

t i o n  (16) and i n  t h i s  sense the highly accurate solutions i n  existence 

f o r  the  Milne problem can be used as a check on extreme conditions for 

the  present s t u d y  of radiation t r m s p r t  between pa ra l l e l  w a l l s .  

Passage t o  the l i m i t  i s  not always direct ,  however. 

+ 0)  of equa- 
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GEXERAL SOLUTION 

Equation (16) i s  a Fredholm integral  equation of the second kind. 

It takes the c lass ica l  form 

@ ( E )  = f ( 5 )  + 

where 

Much of the mathemtical l i t e r a tu re  devoted t o  t h i s  type of problem i s  

b u i l t  around the use of the Schwarz inequality (see, e.g., Tricomi [ 71, 

p. 50 e t  seq.) which i n  turn leads t o  integration of the square of the 

kernel f'unction. 

it i s  more expedient t o  derive what resu l t s  are needed. 

t ha t  t he  kernel 

Rather than r e l a t e  the analysis t o  general concepts, 

The knowledge 

E l (  I E - E l  I )  i s  everywhere posit ive w i l l  be used. 

Let EL be a f i n i t e  constant. We prove f i r s t  that the solution 

can be calculated by. repeated i te ra t ion .  

i n  the calculation of 

The first (n + 1) i t e ra t ions  

Pn+l(E) where @(E) lead t o  the sequence 
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The relat ions 

apply f o r  f i n i t e  EL, 
of the mean value theorem f o r  integrals yields 

Then since the kernel i s  positive, repeated use 

The sequence f o r  posit ive terms therefore converges f o r  a l l  5 .  

For a nonunique solution t o  exist ,  a f i n i t e ,  nonvanishing solution 

would be required, Meghreblian [ 8 ]  has shown that this  i s  impossible 

holds. But th i s  cannot apply f o r  a l l  5 i n  the range 0 5 6 5 EL. - 
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The f in i teness  o f  SL i s  an important condition underlying the  

above resu l t s .  

one can show tha t  

Retaining t h i s  condition and returning t o  equation (16) 

and tha t  the function is  antisymmetric about the point 

f ac t ,  straightforward manipulation of equation (16) reveals t h a t  the  

function P (  5 )  $. P (  EL - 5 )  - (4 + qc) s a t i s f i e s  the homogeneous form 

of the integral  equation (eq. (21 ) ) .  But f o r  f i n i t e  5~ we have noted 

tha t  t he  solution must vanish throughout the  range of integration and 

t h i s  establishes the antisymmetry property 

= 5 ~ / 2 .  I n  

When 5 = 5 ~ / 2 ,  equation (23) i s  seen t o  hold. 

I n  actual  calculation a d  in  the  presentation of r e su l t s  it i s  

convenient t o  introduce the f’unction cp( E ) ,  where 

From equations (23) and (24) one concludes tha t  

c p ( 6 )  i s  antisymmetric about the point E = EL/2. 

t i o n  f o r  ~ ( 5 )  is, from equations (16) and ( 2 5 ) ,  

(p(EL/2) = 0 and tha t  

The in tegra l  equa- 

(P(E,>EdI 5 - 5JId51 ( 2 6 )  
1 1 [EL d5) = 5; [&(EL - E )  - &(E11 + ;; 

= uo f 

The f‘unction c p ( 5 )  has no expl ic i t  dependence on q;f and qi. 
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Calculation of Solution 

The main objective of the analysis was t o  calculate the emission 

function j3( E ) ,  knowing the w a l l  temperatures and radiat ive character- 

i s t i c s ,  

dividing by 

Equation (25) shows tha t  when @(!) i s  made dimensionless by 

qi - s;f, the problem separates into two calculations: 

(a) Determination of the universal f’unctions cp( E )  which depend 

on the single parameter EL. 
(b) Determination of (4 + q i )  and (q i  - s;f) which a re  constant 

f o r  given conditions but which depend on a l l  of the given 

pmameters of the problem as well as the solution cp(E) .  

Before the  numerical solutions are presented, additional re la t ions 

w i l l  be given ‘GO es tabl ish the interdependence between the various 

parameters, We assume here tha t  EL has been fixed and t ha t  the 

function cp( 5 )  has been calculated. Substitution from equation (25) 

in to  equations (14) then yields,  a f t e r  se t t ing  

Z = 1 - 4rorLEs2( EL) 

the two simultaneous equations f o r  and q i  



If the additional notation 

i s  introduced, the determinant of the coefficients of the simultaneous 

equations i s  Z.A and the solution of equations (28) yields 

r . 

q;, f 
= - cLcrTL4[ (1 + ro) $. 4r0(K0 - A) 1 

+ e0aTO4[(l + rL) f hL(& - A)]} 

n l{ 

From equations (12) and ( 2 5 ) ,  a t  5 = 0 



-19- 

and at  6 = tL/2 

where 

Flux, q, and the emission function, P ( g ) ,  are  f i n a l l y  expressed 

i n  terms of  the universal function c p ( E ) ,  the boundary conditions involv- 

ing CTTo4, O T L ~  and the w a l l  parameters as follows: 

where A, I(b, K1, and A a re  given i n  equations (27), ( 2 9 ) ,  and (32). 

The in tegra l  equation (26) for ~ ( k )  can be rewritten i n  an 

a l te rna t ive  form. From equations (12)  and (32) t h i s  is  
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Equation (26) can be rederived from equation (34) by taking the  deriva- 

tive of the lat ter w i t h  respect t o  

the calculation of cp( 5 )  by numerical means. 

equation of the second kind and, as shown previously, the proof of the 

5 .  Either equation i s  adaptable t o  

The first i s  a Fredholm 

convergence of i t e r a t ive  methods offers no analytic d i f f icu l ty .  

cal ly ,  however, the s ingular i ty  i n  the kernel a t  

venience requiring special  attention. 

t i o n  of the f i r s t  kind, i s  l e s s  w e l l  adapted t o  general analysis, but 

Numeri- 

5 = E l  i s  an incon- 

Equation (34) i s  a Fredholm equa- 

i s  numerically more t ractable  since the kernel i s  f i n i t e  everywhere 

although it does possess a s tep discontinuity a t  5 = tl. 
Equation (33a) shows tha t  the w i a t i o n  of  P ( F; ) depends essent ia l ly  

on the variation i n  c p ( 5 ) .  For theoret ical  predictions, therefore, the 

basic  calculations can be carr ied out f o r  the case o f  opaque, black w a l l s  

and f o r  a given opt ical  thickness EL i n  order t o  f i x  cp( 6 ) .  Thus, the 

graphical resu l t s  given by Usiskin and Sparrow [4] or by Meghreblian [83 

can be used direct ly .  The terminology used here d i f fe rs  from these r e f -  

erences; it suff ices  merely t o  note, however, that 

t i o n  of the dimensionless emission function from i t s  value opt ical ly  mid- 

c p ( 5 )  i s  the devia- 

way between the  w a l l s .  Following t h i s  determination, the exact level  

of t he  function p ( E )  can be found after an additional integration t o  
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determine o r  and K1. It w i l l  be shown i n  the next section 

tha t  good approximations of the solutions can actual ly  be carried out 

analytically.  Graphical resu l t s  w i l l  be given then. 

A P P R O X W E  S O ~ I O N S  

In  t h i s  section, approximate solutions t o  the t ransfer  equation 

are given i n  analytic form. 

mined when the kernel i s  a r b i t r a r i l y  replaced by an exponential function. 

This type of approxirnation i s  often used i n  more complex problems involv- 

ing the coupling of radiat ive and other modes of energy transport (see, 

e.g., [ g ] ) .  Situations l i k e  the present one, i n  which different  orders 

of accuracy can be achieved, a re  of value i n  assessing the degree of 

accuracy that can be expected. Second, the exact kernel i s  retained 

but the analysis is  r e s t r i c t ed  t o  the determination of a l inearized form 

of 

In  general, t h i s  solution represents an improvement i n  accuracy over the  

f i r s t  case but a t  some cost i n  ease o f  calculation. 

refined process, representing a modified i t e r a t ion  of the exact equation, 

w i l l  be carried out, 

viously published numerical solutions for 0 < EL <_ 10. 

F i r s t ,  ’the nature of c p ( i )  w i l l  be deter-  

c p ( 6 )  together with i t s  improvement by means of a single i te ra t ion .  

Third, a more 

These l a t t e r  resul ts  compare well with the pre- 

A commonly used approximation f o r  E2( 5 ) involves i t s  replacement 

by an exponential f’unction. More specifically,  the re la t ion  

f 7 c l  
\ J J j  

E&) 
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i s  introduced where m and n are chosen in  some plausible manner. A 

plot  of the two functions shows tha t  small deviations can be maintained 

throughout the full range of j, even though loca l  discrepancies i n  the 

derivatives of the f'unctions become excessive. This approximation was 

implicit  i n  the early work of Eddington [lo] on s t e l l a r  atmospheres, 

the  rationalization stemming f r o m  an averaging over the angular variable 

6 (or 

equations. Different values of m and n are found i n  the l i t e r a tu re  

since compromises must be made when mean values of specif ic  intensity,  

flux, and radiation pressure a r e  required. 

of v i e w  of the astrophysicist i s  given by Ambartsumian ( [  111, p. 1-7 e t  

seq.) . More recently, Vincenti and Baldwin [ 121 have proposed m = n2/3, 

n = 1.562 which f o l l o w  after the requirement i s  imposed that f lux  be 

given properly i n  the Rosseland l i m i t  of strong absorption and that equa- 

t ion  (35) correspond t o  a l eas t  squares f i t  between the two functions. 

The f i rs t  of these conditions i s  vel1 founded physically and is  comon 

t o  a l l  approximations. 

Proposed values of 

3/2 5 n 5 6; the value 3/2, preferred by most authors, i s  the one 

associated with Eddington's approximation. 

p) of the integrals appearing i n  the derivation of the transport 

A discussion from the point 

The second condition i s  obviously more arbi t rary.  

n i n  the l i t e r a tu re  f a l l  usually i n  the  range 

If the f lux  equation i s  m i t t e n  as 
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the exponential approximatioh can be introduced i n  the integrand from 

equation (35 ) .  The result ing integral  equation can be solved explic- 

i t l y  but the degree of approximation is  affected only s l igh t ly  and the 

analysis i s  made mch simpler i f  the f'urther approximation 

i s  introduced. The integral  equation then becomes 

For constant flux, the solution i s  

and consistent with the approximation used, one has 

For all values of the 

a l inear  function of 

parameters the emission f'unction 

5 .  

P ( 5 )  i s  therefore 

From equations (3la) and (3%) 
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A t  extreme values of EL, f lux  is given by 

When n = 3/2 and when the walls a re  opaque and black, equation (Ua) 

i s  the interpolation formula for f lux  derived by Probstein by completely 

different  methods. 

more accurate resu l t s  indicated good agreement. Further comparisons, 

including different  emissivit ies and r e f l ec t iv i t i e s ,  w i l l  be given i n  

figure 2. 

Probstein’s graphical comparison of his formula and 

Equations (41) give in tu i t ive ly  obvious r e su l t s  : f o r  opt ical ly  

t h i n  media (E, << 1) f lux  i s  merely the difference between the t o t a l  

emissions from the two walls; f o r  optically thick media, where the mean 

free path of the radiation i s  small, the f lux  i s  i n  agreement with the 

predictions of Rosseland’s approximation. 

t he  radiat ion transport  equation t o  the heat conduction equation with 

an effective,  nonlineaz conductivity. 

index of refraction, f l ux  i s  given by 

The Rosseland theory reduces 

For a gray material with un i t  

Equation (42) holds only f o r  

applicable only t o  the case of opaque, black walls. 

t i on  (4d) fo r  constant 

t ions  ( 41). 

EL >> 1 and boundary conditions are  s t r i c t l y  

Integration of equa- 

8 1  - <  q then leads d i rec t ly  t o  the second of equa- 
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An improved approximation can be achieved through a study of equa- 

cp(g) is  known t o  be asymmetric about t i on  (26) direct ly .  

5 = 5 ~ / 2 ,  

( ~ ( 5 )  = A[! - (EL/2)] and seek A. 

into equation ( 2 6 ) ,  o r  into the derivative of th i s  re la t ion,  which has 

the form 

The f'unction 

To a f irst  order, therefore, it i s  proper t o  se t  

Direct substi tution may then be made 

The calculation gives, a t  5 = 5 ~ / 2 ,  

The l i nea r  approximation f o r  cp yields cp(0) = -AEL/2. This l a t t e r  

expression, together with equation (44), gives the following predictions 
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r 

Equation (45a) i s  i n  agreement w i t h  the determination of slope given by 

Meghreblian [ 8 ]  f o r  black w a l l s  but equation (45d) does not conform t o  

his r e su l t .  The l inear  approximation of c p (  6 )  does not yield constant 

flux and a decision must be made concerning i t s  evaluation. 

a t  

flux evaluated at  the w a l l .  

The flux 

eL/2, as given i n  equation (45d), gives much better accuracy than 

Equations (4%) and (45d) represent improvements over the simplif i- 

cations inherent i n  equations (39) and (40).  

equation (4%) is, of course, limited since the predicted emission i s  

expressed as a l inear  f’unction of 6 throughout i t s  range. By vir tue 

of the additional integration t o  get flux, however, equation (45d) should 

provide good estimates. 

t i on  (4513) reduces t o  the predictions of equations (41), as indeed it 

should from physical considerations. 

AII improved expression for 

The degree of accuracy of 

One notes that  f o r  extremes i n  EL, equa- 

($E_) now follows by i temt. im W ~ P D  

equation (4%) i s  used t o  evaluate the in tegra l  i n  equation (26). 

process i s  much t o  be preferred, analytically,  t o  the more general 

T h i s  
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i t e r a t ive  scheme employed i n  equation (19) since the f i r s t  estimate i s  

closer t o  the exact solution. 

i t e r a t ive  use of the Milne-Eddington approximation ( [ 2 ] ,  p. 87) t o  

achieve a solution of the Milne equation. 

The process is, i n  fact, similar t o  the 

Continued i te ra t ion  beyond t h i s  stage i s  more d i f f i cu l t .  A simpler 

process i s  available, however, i n  which integration of products of the 

transcendental functions i s  avoided while the  accuracy i s  increased. 

To t h i s  end, i n  view of the known antisymmetry about 

a cubic term t o  the l inear  expression f o r  

5 = 6~ /2 ,  we add 

cp(6). Thus, we put 

where the  slope h at 5 = EL/2 i s  given by (45a). A f i r s t  approxima- 

t ion  i s  found by inserting the l inear form (4%) i n  the in tegra l  equa- 

t ion  (26) t o  f ind 

A value for y 

evaluated at g = 0; 

i s  determined by equating expressions (46) and (47),  
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Now put 

i n  the integral  equation (26) and find 

There resu l t s  from t h i s  integration 

where 

This process can be repeated by sett ing up the scheme 
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. . . . . . . . . . . . . . . . . . . .  

and increasing 

of f igures  . 
n u n t i l  successive resu l t s  agree t o  the desired number 

When a solution f o r  

accuracy, the quantit ies 

ing t o  t h e i r  definit ions i n  equations (27) and (32). 

it was  thought t o  be suff ic ient ly  accurate t o  use the cubic expression 

cp (E)  has been obtained having the required 

q/(q- - G), KO, K1 can be calculated accord- L 
For th i s  pxpose,  

and evaluate the integrals  analytically,  rather than t o  perform a nuiieri- 

c a l  integrat ion using q ~ ( ~ ) (  E ) .  The r e su l t s  are, using superscripts t o  

indicate  correspondence with the i te ra tes  shovn i n  equations (49) : 
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- 6 (%) 

K l ( n ) (  E L )  = A {? E3 (5) 2 - [E4(0)  - E4 @)] } 

+ 6 (;) E5 (+) - 6 [G(O) - E6 (+)I} 
Once or K1 i s  known, the  flux follows from (32a) o r  (3%). 

Finally,  numerical values f o r  the  quantity ( q i  - G) can be found by 

using the  expression (5Oa) f o r  f o r  the calculation of A accord- 

ing t o  (29) and then using equation (31a). 

PRESENTATION Al!lD DISCUSSION OF R.ESJLTS 

In t h i s  section the analytic solutions previously derived w i l l  be 

shown graphically and some formulas of special  i n t e re s t  w i l l  be given. 

Attention i s  directed f i r s t  t o  f lux since reasonable accuracy i s  not 

d i f f i c u l t  t o  achieve. 
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The r a t i o  q/(q;l - c) does not dist,.iguis between black-wall 

Hence, the two formulas, equa- emission and the more general case. 

t ions (&a) and (45d), can be compared d i rec t ly  w i t h  the  numerical 

solution f o r  black w a l l s  i n  [4]  and [8] and also with a recent exact 

calculation of Hottel [lg. 

curve gives resu l t s  from the i te ra t ive  use of the cubic approximation 

t o  cp(  5 )  as outlined following equation (46). 

0 5 EL 5 2 there i s  excellent agreement w i t h  published resu l t s  and the 

so l id  curve appears t o  be a v a l i d  cr i ter ion t o  judge the merit of our 

other approximations. 

references can be detected i n  the range 3 5 EL 5 10 but comparable d i f -  

ferences also ex is t  between the references themselves. Since there i s  

complete agreement at  EL = 2 and l i t t l e  doubt as t o  the approximation 

a t  

possibly at t r ibutable  t o  the draftmanship of the published curves. 

The prac t ica l  consequences are s l ight ,  however, and the present resu l t s  

appear valid t o  about two d i g i t  accuracy. 

equation (Ma)  ( fo r  

by Probstein [ 61. 

which affords a better f i t  on the lower end of the 

sac r i f i ce  of algebraic simplicity. 

polation formulas y ie ld  about the same accuracy but differ i n  the sign 

of t'ne error. For EL >> i aii resul ts  coalesce. 

Figure 2 shows our predictions. The so l id  

Through the range 

Unfortunately, discernible differences from the 

EL = 10, the s l i gh t  deviations i n  the intermediate values are 

The short-dash curve i s  

n = 3 / 2 )  and i s  the interpolation formula proposed 

Equation (4513) supplies another interpolation f o r m l a  

EL scale  but at  a 

2 5 EL 5 6 the in t e r -  In the range 
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The next objective i s  t o  relate the magnitude of q i  - 6 t o  the  

w a l l  boundary conditions fo r  the  general case of nonblack walls. 

t ions (Ub) and (45e) supply this  information f o r  the two l inear  forms 

of the emission function. 

however, if the w a l l s  are opaque o r  i f  they are a l ike i n  material prop- 

e r t i e s .  

l - r o =  eo, 1 - rL = cL. 

Equa- 

Considerable simplification i s  achieved, 

F i r s t ,  we sha l l  r e s t r i c t  attention t o  opaque walls where 

From equations (29) ,  (31a), and (32) one gets 

- a;f E 1 

Substi tution in to  the denominator of the  r igh t  member, from equa- 

t ions (Ma) o r  (45d), provides the desired expression, For example, 

equation (ba) with n = 

flL4 - flO4 

For large and small EL 
re lat ions.  

Figures 3 show, f o r  

3/2 yields  

1 + 35L/4 - - 

equation (52) reduces t o  more familiar 

opacpe walls, the  function q/(oTL4 - oTO4) 

as given by the different  approximations. 

s - m b l y  exact t o  the accuracy with vhich they can be read. 

dash curves are, i n  effect ,  generalizations of Probstein's interpolation 

f o m l a  and, from equations ( b a )  and (52), are given by the relat ion 

The so l id  curves a r e  pre- 

The short-  

(53) 
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The remaining curves (long dash) resul t  f rom use of expression (45d) 

i n  equation (51). 

ferences from the so l id  curve can be estimated f romthe  resu l t s  shown, 

and the f a c t  that the three approximtions are indistinguishable f o r  

the lowest curve on each graph. 

The dashed curves are not shown in  a l l  cases; d i f -  

The re la t ive  merits of the simplest approximation, tha t  i s ,  the one 

associated with the exponential kernel, appear now t o  have been f u l l y  

established insofar as predictions of flux are concerned. 

write, f ina l ly ,  the most general formula based upon this approach: 

We therefore 

Equation ( 54) embraces and extends the previous interpolation f ormlas . 
The actual distribution of emission, o r  of cp(E) ,  provides the most 

In  exacting demands upon the approximations underlying the predictions. 

figure 4 the curves were calculated by two methods. The s o l i d  l ines  

again correspond t o  repeated i te ra t ion  of the cubic expression; the 

other curves are given by equation (47), the f i r s t  i te ra t ion  of the 

l inear  re la t ion.  

t ions of To the scale of these 

figures both l inear  distributions conform t o  the s t ra ight  l ines  tangent 

t o  cp(E)  at E = EL/2. The standard of comparison comes from the numer- 

i c a l  r e su l t s  plot ted i n  [4] and [ 8 ] .  It does not seem possible, became 

of inconsistencies i n  the published.figures, t o  draw unequivocal con- 

clusions about the accuracy. Qualitatively, the resu l t s  m y  certainly 

No attempt was  made t o  include the l inear  dis t r ibu-  

cp(E) predicted by the simpler methods. 
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be termed sat isfactory but small local deviations exist i n  each case. 

These discrepancies are a t  most of the order of 1 or 2 percent. 

Diminishing preciseness inevitably occurs i n  the v ic in i ty  of the walls. 

I n  f igure 5 the dependence of the functions &, K1, and A on EL 

i s  shown according t o  the best  approximations of th i s  paper. 

values are of use i n  further specific calculations of 

determination of the leve l  of the emission function. 

These 

cp( 5 )  and i n  the  

In the i n i t i a l  par t  of t h i s  paper the analysis i s  cast  i n  a general 

form and the problem of radiative transport between w a l l s  w i t h  rather 

a rb i t ra ry  character is t ics  i s  related t o  the calculations involving black 

walls. In  the l a t t e r  par t  of the paper the philosophy i s  more one of 

pragmatism; namely, t ha t  t o  the accuracy of the physical idealization 

and t o  the accuracy of many engineering estimates, it i s  preferable t o  

r e t a in  some analytic control over the resu l t s .  I n  par t icular ,  the use 

of the simplifying assumptions leading t o  the use of the exponential 

kernel yields simple formulas of pract ical  in te res t .  Analytic methods 

are shown also t o  produce solutions of reasonable accuracy. The mathe- 

matical nature of the problem of radiative transport  i s  of considerable 

in t e re s t  t o  theor i s t s ,  and, i n  the ultimate degree of perfection, numer- 

i c a l  calculations appear t o  be required. 

f ixing a standard of excellence and need t o  be understood i f  r e s t r i c -  

t ions are t o  be relaxed and estimates of the effects  of frequency- 

dependent absorptivity and emissivity are t o  be studied. 

hand, a good grasp of the quali tative character of the solution i s  

important i n  the extension t o  l e s s  idealized cases and algebraic formulas 

may be preferable t o  purely numerical r e su l t s  i n  f i l l i n g  this  need. 

Such methods are  essent ia l  i n  

On the other 
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F I m  LEGENDS 

Figure 1. - Sketch showing pa ra l l e l  walls separated by absorbing medium. 

Figure 2.- Dimensionless flux, as calculated by three methods of 

approximation, showing dependence on opt ical  thickness. 

Figure 3.- Dimensionless flux between opaque w a l l s ,  showing dependence 

on opt ica l  thickness and w a l l  emissivit ies.  

Figure 4. - Approximations of universal f’unction cp( S / ~ L )  for different  

op t ica l  thicknesses. 

Figure 5 . -  The f’unctions %(EL), K1(EL), and A(SL). 
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